'The DØ Run 2b Silicon Tracker Project'

Status Report

DØ Beaune Workshop June 15-20, 2003

Marcel Demarteau Fermilab

For the Run 2b Silicon Group

Outline

- Reminder of Design of the Silicon Detector
- Status of design and prototyping
 - Sensors
 - Outer Layers
 - Inner Layers
 - Support Structures
 - Layer 0
 - Layer 1
 - Modules, Staves
 - ◆ Readout System
 - SVX4
 - cables
 - boards

- ...

- Testing status
- Software
- Schedule
- Summary and Conclusions

Detector Design

- ☐ Six layer silicon tracker, divided in two radial groups
 - I nner layers: Layers 0 and 1
 - 18mm < R < 39mm
 - Axial readout only
 - 50/58 μ m readout for LO/L1
 - Assembled into one unit
 - Mounted on integrated support
 - Outer layers: Layers 2-5
 - 53mm < R < 164 mm
 - Axial and stereo readout
 - 60 μm readout
 - Stave support structure
 - All sensors intermediate strips
- Employ single sided silicon only,3 sensor types, axial strips,
 - 2-chip wide for Layer 0
 - 3-chip wide for Layer 1
 - ◆ 5-chip wide for Layers 2-5
- No element supported from the beampipe

From Basics to Details

- Status will be presented of nearly every element of the detector following the signal path
 - Sensors
 - Support Structures
 - Hybrids
 - Downstream Electronics

Outer Layer Sensors

□ Layers 2-5

- 5-chip wide, 60μm pitch, intermediate strips, 40.34x100 mm cut dimension
- Order placed for 100 prototype sensors, May '02; sensors shipped Nov. 29
- ◆ Hamamatsu's internal QA program indicates sensors are of very high quality

- Bulk tests

 No single sensor exceeding leakage current of 400 nA

Strip tests

 Only three sensors have a total of 8 strip defects

Lot No.	Serial No.	Туре	Ch. No.	
C) // / / / / / / / / / / / / / / / / /	E 1	AC-AL short	20-21	
SWA61737	51	AC-AL short	52-53	
SWA61737	65	AC-AL short	39-40	
SWA61738	108	Coupling short	94	
		Coupling short	95	

Outer Layer Sensors

- Subset of sensors undergone full QA program
 - I-V curve, up to bias voltage of 700V; C-V curve, determination V_{depl}
 - Long-term stability of detector total leakage current
 - AC- and DC scan
 - Resistance of implant, poly-silicon and Aluminization
 - Interstrip capacitance and total load capacitance

Total load capacitance $C_L \sim 1 pF/cm$ for frequencies of interest

- Sensors satisfy all electrical specifications
 - All HPK defects reproduced; very few (~5) additional defects uncovered

Outer Layer Sensors Status

- □ Production Readiness Review March 6,7 at Fermilab
 - Review very helpful and uncovered some QA issues which have been addressed
- □ Full production order for 2735 sensors placed with Hamamatsu mid April
 - HPK delivery schedule

```
130 pcs
                during July, 2003
                during Aug., 2003
  130 pcs
                 during Sep., 2003
  270 pcs
  270 pcs
                 during Oct., 2003
  270 pcs
                 during Nov., 2003
- 270 pcs
                 during Dec., 2003
  270 pcs
                 during Jan., 2004
  270 pcs
                 during Feb., 2004
                 during Mar., 2004
  400 pcs
  400 pcs
                 during Apr., 2004
                 during May, 2004
   55 pcs
```

Layer 1 Sensors

■ Layer 1

- 3-chip wide, 58μm pitch, intermediate strips, 24.3x79.4 mm cut dimension
- Order placed for 10 prototype sensors, April '02; sensors shipped Sept. 21
- Hamamatsu's internal QA program indicates sensors are of good quality

Lot No.	Serial No.	Туре	Ch. No.
SWA61589	6	Coupling short	267
SWA61589	7	Coupling short	320
SWA61589	20	AC-AL open	
		AC-AL open	48

four defective channels for three sensors

- strip leakage current for all 10 sensors at FDV
 - average strip current of 0.4 nA
 - 14 strips have a current of 1 nA
 - specification: $I_{strip} < 10 \text{ nA}$
- PRR planned in July

Layer 1 Sensors, Irradiation

- Exposed sensors and test structures to 10 MeV p beam at KSU
 - Mapped out depletion voltage and I_{leak} dependence as function of fluence

- No breakdown observed up to Vbias = 800 V
- I leak ~ 300 μA at highest fluence
- V_{depl} agrees with Hamburg model
- Data in agreement with other measurements (Montreal)

- Cross calibrated Faraday Cup fluence measurement with Cu foil activation
 - Independently verified at Fermilab
- All studies completed; PRR for inner layer sensors to take place, tentatively, end of July

Layer 0 Support Structure

- ☐ Inner shell, carbon fiber
 - 12-sided
 - 4 layers [0,90]_s lay-up
 - Cured thickness = 0.22 ± 0.01 mm

- Outer shell, carbon fiber
 - ◆ 12-fold crenellated geometry
 - 6 layers [0,20,-20]_s lay-up
 - Cured thickness = 0.31 ± 0.01 mm
 - No hybrids mounted on sensors for LO: analogue cables
- □ All FEA analyses, mechanical and thermal, completed
- All LO and L1 prototype fabrication tooling completed and evaluated
 - deflection ~5 μm under applied load of 400 grams (distributed 200gr nominal load)
- Certified fabrication procedures for LO prototype production by making preprototypes

Layer 1 Support Structure

- □ Support structure similar to Layer 0
- Readout electronics mounted on the sensors:
 - Power dissipation of 0.5W/chip
 - Power dissipation of < 0.1 W/sensor after 15 fb⁻¹
- Pre-prototypes made of all L1 components
 - Inner tube and castellated structure
 - Cooling manifold components machined and connectors to cooling tubes
 - Connection and support membranes

Layers 2-5: Staves

■ Basic building block of the outer layers is a stave

- Stave is:
 - two-layer structure of silicon sensors
 - One layer of axial only, and one layer of stereo only readout
 - stereo angle obtained by rotating the sensor
 - Layers separated by a "core" with positioning and reference pins and PEEK cooling tubes
 - Total of 168 staves
- C-shells at edge of stave provide stiffness
- Staves are positioned and supported in carbon fiber bulkheads at z = 0 and z = 605 mm.
 - Locating features on stave provide the alignment

Mechanical Stave and Bulkhead

- Met milestone for mechanical stave fabrication Dec 18, 2002
 - Measurements and procedures being developed for production and QA
 - Stave core thickness.
 - Robustness of stave core through temperature cycles
 - C-channel deflection and twist
 - Thermal performance with dummy hybrids
 - Stave flatness after module installation
 - Stave deflection creep

- Forming of PEEK cooling tubes and leak tightness
 - tube, glue joint tube-nozzle, glue joint nozzle cilran tube
- Reference pinholders and alignment tolerances
- Ongoing leak test of PEEK tubes
- No outstanding issues with staves; PRR in August

Bulkhead

- Measurements
 - Deflection to transverse and radial load
 - Placement of locating rings, now to few micron accuracy employing CMM as pick and place machine

Readout Modules

- Each stave has four readout modules
- □ Readout module length varies with z-position.
 - ◆ For all layers, the modules closest to z = 0 are 200 mm long
 - ◆ Those furthest from z = 0 are 400 mm long
- **□** Four Readout module types
 - ◆ 10-10 (axial, stereo)
 - 20-20 (axial, stereo)
 - Ganged sensors will have traces aligned (sensors are 10cm long)
- Module configuration

- Each readout module serviced by double-ended hybrid
 - Each hybrid has two independent readout segments

Readout Module Fabrication

- □ Prototypes built of all six different readout modules
 - Prototype fixtures available for modules production for all types
 - Some fixtures are adequate and will be used for production
 - Fixtures for Layer 1 modules similar to 10-10 modules
 - Stave assembly fixtures and C-channel attachment fixtures are also prototyped

Readout Schematics

- Layers 1-5: Hybrids mounted on silicon
 - Hybrid -> digital cable -> junction card -> twisted pair -> Adapter Card
- Layer 0: Hybrids mounted off-board
 - Analogue Cable -> Hybrid -> digital cable -> junction card -> twisted pair -> Adapter Card
- □ SVX4 chips mounted on hybrid; employed in SVX2 readout mode

SVX4 Chip

■ SVX4 readout chip timeline

- Pre-amp (MOSIS 11/25/00)
- Pre-amp and pipeline (MOSIS 06/04/01)
- First full prototype received June 11, '02
 - Issues
 - few bugs
 - » pullup to USESEU.
 - » Add pullup or pulldown to DOMODE.
 - » Pull MSB of Chipl D high.
 - » Logic changes to FECLK gating/ADC control/FE control in DOMode

features

- » Large pedestal bow across chip
- » channel to channel variation
- » pedestal variation with pipeline depth
- Redesign of comparator circuitry
- Submitted to TSMC April '03
- Full preproduction chip received May 16, '03
 - 24 wafers, 454 chips/wafer; after yield ~ 3000 chips for CDF and DØ each
 - Initial tests demonstrate full functionality of the chip

SVX4 Chip

- Version 2 of chip (old)
- ☐ Initial result Version 3_b (new)

- ◆ Bow structure in pedestal is gone even with extreme patterns and voltages
 - Minimize time between Comp. and ramp resets; Ramp Ped. set to max (lowest pedestal)
- Channel-to-channel fluctuations much smaller

Testing plans

- Will test single chips asap at 14th floor (LBL and stimulus setups)
- Will stuff a few LO hybrids asap with untested chips
- Preparing a minimum list of tests to be performed on the chip

Hybrids

- □ Layer 0
 - 22 prototypes received from Amitron
 - Flatness 20-40 um (spec 100 um)
 - Thickness 750 um (spec 800 um)
 - Hybrids rejected for mechanical reasons: crack in hybrid
 ~10 micron wide; not cross artwork; hybrid electrically ok
 - Being used for LO prototypes and works
- □ Layer 1
 - 18 hybrids received from CPT (CA); 17 electrically good
- □ Layer 2-5
 - Received a total of 74 hybrids from Amitron and CPT
 - Electrically all hybrids are ok; change in grounding for new rev.
 - Mechanically hybrids have problems:
 - Flatness spec of 50 μm not met by vendor
 - Not perfect CTE matching of BeO and dielectric causes bending during firing cycles; to compensate some dielectric is printed on the other side of BeO substrate
 - Limitation: Total thickness spec (0.95 mm) and processing issues
 - First three batches from CPT were close to the spec while two last batches failed
 - Flatness specification relaxed to 150 um
 - Revision of layout of hybrids completed May June '03
 - Order for new prototypes placed with 4 companies: CPT, Amitron, Halcyon, Scrantom

Digital Cable, Junction Card and Twisted Pair

- DJC: Three vendors qualified
 - Honeywell, Basic Electronics, Century
- Ordered 450 test stand cables
 - Received 300 from Century; 150 ordered from Basic
 - Currently going through production steps
 - 150 cables : being ablated
 - 150 cables: AVX connectors installed, waiting for backing
- Junction card, no active elements
 - L0/1: 3 hybrids → 1 junction card
 - L2-5: 2 hybrids → 1 junction card, top/bottom
- Revised earlier design to accommodate installation
 - ◆ Receiving: 50-pin AVX connector away from z=0
 - Outgoing: soldered twisted pair cable bundle
- Twisted Pair
 - Power & HV lines : 6-pin Omnetics connector
 - Signal pairs: 44-pin Omnetics connector
 - Coax cables for clock signals
 - New prototype cable for New England Wire (common with CDF)
 - will use Omnetics connectors on both ends

Adapter Card

- Active Card: interfaces new and existing readout electronics
 - Voltage regulation, SVX4 power
 - Differential-to-Single-Ended 2.5 to 5 V translation for SVX4 Data
 - ♦ 5 to 2.5 V translation for SVX4 Controls
 - Routing of Clock and HV
 - Each adapter card has four or six channels
 - Input: twisted pair
 - Output 80-conductor 3M cable (existing)
 - 12 boards fabricated
- □ Revision 2
 - Bypass clock lines on AC
 - Board power through 80C cable
 - One SVX4 power source, one voltage regulator/channel
 - Termination changes
 - Engineering review at KSU April '03
 - 12 boards to be fabricated by end of June

Mechanical Issues Addressed

■ Adapter Cards are mounted on face of calorimeter

- Four rings of adapter cards (dubbed the "horseshoe")
- ◆ Adapter card is now an active element and needs cooling, ~650W per side for read all mode, ~ 505W for sparse readout

☐ FEA analysis

- edges of card held at constant 22 °C
- transfer heat from AC to horseshoe through six standoffs
- 4 mil ground plane used for conductive cooling
- Maximum temperature of component is 36 °C.
 - hottest components on top
 - SVX4 power regulator
 - SVX4 single ended signal driver
 - hottest components on bottom
 - SVX4 bi-directional differential signal driver
 - Bi-directional drivers to IB
 - Board power regulators for 3.3V and 5V

Temperature profile on top side of AC

Low Voltage Power Supply

- ☐ The LV power supply system needs to provide:
 - ◆ SVX4: 2.5V
 - Interface Board: +15V, 5V
 - Adapter Card: 5V (regulators and monitoring) and 3.3V (single ended drivers)
- PS will be located in MCH-1, needs long distance remote sense
- Two Wiener PS received in February '03
 - Power up and monitoring verified.
 - External interlock feature verified
 - Load test and regulation ongoing
 - CAN-bus to VMF interface
 - The control/monitoring system under development
 - hardware in place, working on software issues.
 - Will be implemented at the two major integration tests (1% and 10% test stands)

Analogue Flex Cables

- □ For layer 0 need low mass, fine pitch flex cables to carry analogue signals to hybrids
 - Technically challenging
 - Trace width ~ 15 20 mm, pitch 91 mm
 - 2 cables offset by 50 mm
 - Noise determined by capacitance
 - For S/N > 10: C < 0.55 pF/cm
 - With 16mm trace width -> 0.51 pF/cm for full cable assembly
- Fourth set of prototype cables (Dyconex)
 - ♦ 40 cables, max. length 463.65 mm
 - No faults!
 - Mechanically and electrically cables of excellent quality
- Remaining outstanding issue is bonding of cables with insertion of appropriate spacer and spacing material

Summary of Prototyping

		First Prototype		Second Prototype		Final	
Component	Vendor	Design	Ordered	Delivered	Ordered	Delivered	Order
L0 Sensors	HPK	✓					
L1 Sensors	HPK	✓	✓	✓			
L2 Sensors	HPK	✓	✓	✓			✓
Analogue Cable	Dycx	✓	✓	✓	√ ✓	✓ ✓	
LO Hybrid	Amitr.	✓	✓	✓			
L1 Hybrid	CPT	✓	✓	✓			
ا ۲۵۸ ا ایرامجنط	CPT	✓	✓	✓			
L2A Hybrid	Amitr.	✓	✓	✓			
L2S Hybrid	CPT	✓	✓	✓			
	Honey	✓	✓	✓	√ ✓	✓ ✓	
Digital Cable	Basic	✓	✓	✓	√ ✓	✓ ✓	
	Century	✓	✓	✓	√ ✓	✓ ✓	
Junction Card		✓	✓	✓	✓		
Twisted Pr. Cable		✓	✓	✓	✓	✓	
Adapter Card		✓	✓	✓			
Purple Card		✓	✓	✓	✓	✓	✓
Test Stand Elctr.		✓	✓	✓			✓

□ Prototypes of all components in hand, no major issues anticipated; moving towards final (pre-)production orders

Mapping and Software

- ☐ Map and crate assignments (VRB, Sequencer, IB) for detector complete
 - All references follow axial/stereo grouping
 - Respect STT requirements
 - Sequential Layer format chosen
- Software for data unpacking has been written
- Addressing scheme for modules, staves determined
 - L4-05NA-1010 (Layer 4, φ-index 5, North, Axial, 10-10)
- Database
 - Switched from MySQL, university based database
 - Adopted ATLAS database design
 - Oracle based identity relationship
 - Item
 - Test
 - Assembly
 - Shipment/Tracking
 - I deally suited to silicon detector
 - Supported by DØ online support group
 - Official transfer of designer files from ATLAS

Testing: Burn-in Stands

- □ Components are rigorously tested in burn-in stands
 - Two hybrid burn-in test stands, 16 channels each
 - Two module burn-in test stands, 32 modules each
 - with associated cooling
 - Setup of burn-in stands complete at SiDet and passed Safety Inspection for 24/7 running
- Burn-in performed with stand-alone sequencer system and the 'Purple Card'
 - The equivalent of the "Adapter Card set" is a Purple Card
- Production Purple Cards received
 - ◆ 75 cards, 55 available, 20 still being debugged
 - After testing needs installation in burn-in stands
- Burn-in software: TclTk scripts
 - Runs for 4 chip hybrid; being extended for 6/10 chips
 - Tested for single SASEQ to be tested for multiple SASEQs
 - Most other functionality can be adopted from Run IIa
 - As of Tuesday, ran successfully 1 hybrid for 3 days

Integration Tests

- Nearly all of the testing is performed with full system setups
 - Full Chain test with Stand-Alone sequencer
 - ◆ "1% Test"
 - Readout System at SiDet identical to the readout system used in the experiment
 - For functionality test of individual components up to a total of 8
 - setup complete and debugged; now being fully cabled
 - resolved incomplete readout for fraction of a percent of the events
 - "10% Test"
 - Readout System at SiDet identical to the readout system used in the experiment
 - Capability for full crate test; Tests planned:
 - Sector test of Layer 0
 - » 3*6= 18 hybrids, i.e. 3 φ-sectors; study noise with analogue cables
 - Sector test of Layer 1
 - » 3*6 = 18 sensors, i.e. 3ϕ -sectors; study and monitor operating conditions
 - Full sector test
 - » Minimum of 5 full staves readout, i.e. 20 hybrids
 - » Combination of Layer 0, Layer 1 and Staves
 - System currently being setup in the Lab C clean room at SiDet
 - In addition have laser setup and debugging stations

Grounding for Inner Layers

- ☐ Goal of S/N > 10 for Layer 0 after irradiation
- Current results on the bench:
 - ◆ S/N ~ 12 before installation on support structure
 - ◆ S/N ~ 11 after installation in support structure

- Importance of providing low inductance ground connections and adequate overall grounding
- Studies ongoing to increase margin of S/N

Adopted Grounding Scheme

□ 114+ flexible printed circuits will be implemented to address grounding for Layer 0

Issues

- Overall schedule for completion of project slipped by 2.5 months compared to Lehman schedule (September '02)
 - Silicon Detector Complete: 9/12/05 Lehman
 - Silicon Detector Complete: 11/28/05 Now
 - Nearly all attributable to the SVX4 chip
 - However, we do have a working chip now which can be regarded as preproduction chip and signoff on various components can occur with current version of the chip
- Hybrids:
 - Vendors were not able to meet our flatness specification
 - Relaxed tolerance on flatness to 150 μm
 - Some vendors (CPT) have increased unit price by factor of 2 compared to budget
 - Started additional vendor qualification and contracted two new vendors
 - ◆ If SVX4 chips is indeed production version, hybrids will determine the critical path for the project
- Layer 0
 - S/N ratio currently obtained on the bench could be improved upon

Schedule

 Production Readiness Review is final step in signing off on design and releasing order

PRR for:	Scheduled Date	Comments
Purple Card	Jan 31 '03	All cards in hand
Purple Card L2-5 Sensors	March 06, '03	Sensors to arrive in July
L0 & L1 Sensors	July '03	All documentation nearly ready
Low Voltage System	August '03	
High Voltage System	October '03	
LO Hybrids	August '03	
L1 Hybrids	October '03	E311
L2-5 Hybrids	October '03	This Fall
Analogue Cables	September '03	
Digital Jumper Cables	October '03	
LO & L1 Structures	Spetember '03	In preparation
Finalize Stave Design	August '03	In preparation
20 cm Gangs	September '03	In preparation
Junction Card	04	
Twisted Pair Cable	04	
Adapter Card	04	
Module Production	04	

- A very busy fall, but
 - no major technical difficulties foreseen
 - After this set of reviews nearly all elements are in production

The Current Climate?

Copyright 3 2002 United Feature Syndicate, Inc.

■ We can only convince ourselves, management and the community with results and by performing well

Summary and Conclusions

- □ Project has prototyped all components of the design
 - Remaining technical problems being addressed; don't seem to be major.
- We have started to place the final production orders for various components
- Project has a strong, knowledgeable, very dedicated team
- Whatever the future may hold for the Run II b silicon project, it is not for lack of dedication of people within the collaboration!
- We will proceed, as in the past, and intend to continue building this detector as expeditiously as to not preclude a potentially very challenging and rewarding path for DØ and the HEP community as a whole; we are looking towards your continued support to accomplish this.